What is the Drug-Impaired Driving Learning Centre (DIDLC)?

The Drug Impaired Driving Learning Centre (DIDLC) is a fully bilingual, web-based educational resource that was developed by the Traffic Injury Research Foundation, in partnership with Desjardins Insurance.

This comprehensive, accessible tool was created to inform the development of an evidence-based drug-impaired driving strategy. It was designed to meet the needs of a wide spectrum of diverse stakeholders who are seeking more information about priority issues.

The objective of the is to support the work of governments and road safety partners by sharing current knowledge about research and practice, and increasing awareness about drug-impaired driving. A consolidated base of knowledge is essential to build a common understanding of the drug-impaired driving problem, inform discussion, and achieve progress in reducing it.

The Learning Centre contains several modules that are structured in a question and answer format, similar to other TIRF educational programs. Module topics include:

- magnitude and characteristics of the problem
- effects of drugs on driving
- legislation and penalties
- tools and technologies.

To view more fact sheets, or to get more information about drug-impaired driving, visit http://druggeddriving.tirf.ca

What functional abilities are necessary for safe driving?

Driving is a complex self-paced task that requires many skills and abilities to be completed simultaneously, and it requires that information be processed at a rapid pace while utilizing visual (ex: ability to scan the road for hazards), cognitive (ex: ability to divide attention between multiple concurrent events) and motor skills (ex: ability to perform physical movements such as turning the steering wheel, pressing acceleration and brake pedals). The processes drivers use to operate a vehicle can be divided into three steps: perception, decision and reaction. These three steps are assumed to happen consecutively, and depend on the driver’s visual, cognitive and motor abilities. Impairment in any or all of these abilities can lead to unsafe driving.1

What are the different types of drugs that can impair driving?

Drugs that can impair driving are categorized according to the seven drug categories, established by the International Drug Evaluation

1 Dewar et al. 2007
Drug-Impaired Driving Learning Centre

and Classification Program (DECP). These include: cannabis, central nervous system (CNS) depressants, central nervous system (CNS) stimulants, hallucinogens, dissociative anesthetics, narcotic analgesics, and inhalants.

There are also New Psychoactive Substances (NPS) that are frequently not included under the international drug control conventions. There are currently over 450 NPS being monitored by the European Union, with over half being reported since 2013. An NPS is a synthetic drug that is designed to mimic the pharmacological effects of existing controlled substances. It is unlikely that synthetic drugs are detected using the common standardized drug test.

An NPS is characterized by the following features: psychoactive properties; a level of potential harm comparable to internationally controlled drugs; and newly available, rather than newly invented.

How do researchers measure the impairing effects of drugs on driving abilities?

Laboratory tests. Researchers use laboratory tests that measure cognitive or psychomotor abilities thought to be related to or involved in driving. These tests are typically validated and reliable measures to assess specific cognitive capacities and physical motor coordination.

Cognitive tests evaluate the effects of a drug on these specific capacities: attention (simple and divided), perception (auditory, time and visual), memory (long and short-term), vigilance, logical reasoning, problem-solving and decision-making. Examples of validated tests include the Tower of London task, the Wisconsin Card Sorting Task, the Time Wall test, and the Object Movement Estimation under Divided Attention (OMEDA).

Psychomotor tests measure the effects of a drug on participant performance during actions such as body sway, motor coordination and reaction time. Examples of specific tests commonly used to evaluate the effects of drugs include Simple Reaction Time and the Critical Tracking task.

Simulator tests. Researchers also employ driving simulators to evaluate how the administration of a drug can affect driving. Driving simulators can vary in terms of the level of immersion, which can range from a simple desktop display to a full car cabin with a 360 degree display. Regardless, all simulators display an interactive virtual roadway (i.e., driving scenario) and the participant is directed to perform specific navigational and driving tasks on the virtual roadway via a steering wheel, accelerator and brake pedal. Drivers are

2 The term “cannabis” refers to the cannabis plant that contains more than 100 cannabinoids. The primary psychoactive component of cannabis is delta-9-tetrahydrocannabinol, commonly known as THC. THC and its psychoactive metabolite, 11-hydroxy-THC or 11-OH-THC, and primary inactive metabolite, 11-nor-9-carboxy-THC or THC-COOH are frequently measured in biological fluids to document cannabis intake.

3 New psychoactive substances in Europe: An update from the EU Early Warning System 2015

5 New Psychoactive Substances Review: report of the expert panel 2014

6 Verstraete et al. 2014
administered a specific drug dose or placebo and instructed to complete a driving scenario during which they must perform a variety of actions. Measures typically include: lane weaving behaviours (variability in lateral lane position), speeding behaviours (average speed, speed variability), headway maintenance (the amount of headway distance maintained between the driver’s vehicle and the vehicle in front), braking reaction time, and near-crash and collisions.7

On-road tests. On-road driving tests involve study participants operating a real vehicle, in the presence of a driving instructor who has a secondary set of vehicle controls, either on a closed track or on a public road. Test cars are usually fitted with devices to measure speed, lane positioning, acceleration/brake use, and video cameras to record the driver’s actions$errors.8

What are the limitations of the current research that measures the effects of drugs on driving ability?

Laboratory tests of cognitive and psychomotor capacities often only measure a single skill or ability related to driving performance, and it is well-known that driving ability engages a combination of cognitive, psychomotor and motor functions.9 Even when a series of tests are used, they are administered independently of each other and many are short and relatively simple, and consequently fail to replicate the complex skills or engage the precise psychomotor and cognitive capacities required for driving.10

Driving simulators also have limitations since they can never fully replicate authentic driving. Participants may be less careful, as they are aware that it is a safe and artificial environment. As a result, driver errors and risk-taking behaviours may be exaggerated.11 Additionally, driving scenarios are often short, involve few elements, engage a limited range of cognitive and psychomotor capacities, and thus do not replicate the complicated conditions that drivers may normally experience.12

The central limitation of on-road driving tests is the safety concern associated with placing drug-impaired drivers on the road, though these can be mitigated by using closed course tests and the presence of driving instructors who can take control of the vehicle when necessary.

What are dissociative anaesthetics?

Dissociative anaesthetics reduce pain by reducing the brain’s perception of pain.13 Common drugs that fall under the dissociative anaesthetics category include phencyclidine (“PCP” “Angel Dust”) and ketamine (“K”, “Special K”). PCP was initially used as a surgical anesthetic, but its clinical use in humans was stopped due to its ability to induce severe delirium and hallucinogenic effects. Ketamine was also initially used clinically as a human anaesthetic. Ketamine is now limited to veterinary use as a large animal tranquilizer and in pediatric surgery. The short-term effects include increased heart rate, blood pressure, sedation, distractibility, time and space distortions, disorientation, decreased awareness, sensitivity to pain, and motor coordination, and amnesia.14

7 Verstraete et al. 2014
8 Schulze et al. 2012; Verstraete et al. 2014
9 Leufkens et al. 2007
10 Ramaekers et al. 2005
11 Dassanayake et al. 2011; Wolff et al. 2013
12 CCSA 2016; DECP 2016
13 DECP 2016
14 Couper & Logan 2004; Wolff et al. 2013; Hayley et al. 2015
New psychoactive substances such as diphenidine, methoxphenidine, 3-methoxyphencyclidine (3-meo-pcp) and 4-methoxyphencyclidine (4-meo-pcp) are derivatives of and drug substitutes for PCP and have effects similar to other dissociative anesthetics.15

Which dissociative anaesthetics are most frequently detected in drivers?

Dissociative anaesthetics are not frequently detected in drivers. According to the Alcohol and Drug Crash Problem Report: 2012 prepared by TIRF for the Canadian Council of Motor Transport Administrators (CCMTA), dissociative anaesthetics were detected in fewer than 2% of fatally injured drivers in Canada. In addition, little data are available regarding the specific detection rates of each type of dissociative anaesthetic among drivers.

Can dissociative anaesthetics impair driving abilities, and if so, how?

Laboratory research indicates that severe cognitive and psychomotor impairments do occur with ketamine intake, including deficits in divided attention and reaction time.16 Other observational studies examined roadside detection of ketamine, finding similar indices of ketamine impairment.17 A review of the existing research concluded that ketamine causes significant impairment in various functional abilities related to driving.18

Are the effects of dissociative anaesthetics on driving ability impacted by other factors, such as alcohol, or sleep deprivation?

Alcohol and some types of CNS depressants can increase the effects of dissociative anaesthetics.19

Traffic Injury Research Foundation

The mission of the Traffic Injury Research Foundation (TIRF) is to reduce traffic-related deaths and injuries. TIRF is a national, independent, charitable road safety institute. Since its inception in 1964, TIRF has become internationally recognized for its accomplishments in a wide range of subject areas related to identifying the causes of road crashes and developing programs and policies to address them effectively.

Traffic Injury Research Foundation (TIRF)
171 Nepean Street, Suite 200
Ottawa, Ontario K2P 0B4
Phone: (877) 238-5235
Fax: (613) 238-5292
Email: tirf@tirf.ca
Website: www.tirf.ca
ISBN: 978-1-988945-02-6

In partnership with:

15 Stachel et al. 2016; Helander et al. 2015
16 Curran & Morgan 2000
17 Cheng et al. 2007
18 Giorgetti 2015
19 Retrieved from: http://www.talktofrank.com/drug/ketamine